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Abstract--The advantages of new forms of Faxen laws with derivatives of finite order are discussed 
and specifically illustrated for prolate spheroids. Earlier ideas on the connection between the Faxen 
laws and certain "associated solutions" (single, particle solutions of the Stokes flow where the 
ambient velocity is a uniform stream or linear field) have been refined for the case where the 
associated solution has a relatively simple singularity solution. 

1. I N T R O D U C T I O N  

In this note, we derive new forms for the Faxen law for the force, torque and stresslet on a 
particle of arbitrary shape and give specific examples for the prolate spheroid. The 
companion paper utilizes advantages of the new forms. Faxen (1924) showed that the force, 
F and torque, T on a stationary, rigid sphere in an unbounded fluid in creeping flow v ® are 

F - 6w/za(1 + I/6 d2V2)V®(X¢), 

T - 47r~ta3V x v®(x¢). 

[1.11 

[1.2] 

Batchelor & Green (197 2) have derived an analogous Faxen-type relation for the stresslet or 
symmetric stress dipole I; for a rigid sphere in an ambient rate-of-strain field 0% 

S - 20//3 "x/~a3(1 q- 1/10 a2V 2) e = (Xc). [1.3] 

As shown by Feiderhof (1977) and Rallison (1977) these relations can be used in the 
multipole expansion of the method-of-reflections calculations for hydrodynamic interactions 
between two or more particles. 

Generalization of the Faxen laws to other shapes, e.g. ellipsoids have been carried out by 
Brenner (1964) and Rallison (1978) and are of the form 

1 1 4 ) 
F= + . . .  v '(x3, 

( 2 . 3 ,  3.3' , ) 
T =  1+-~-. ,  D2+--~.1 D + . . .  Vxv=(x, ) ,  

( 2 . 3 !  3.3l . ) 
s =  z r + . . .  

[1.4] 

[1.51 

[1.6] 

where D 2 - a202/~x2 + b'O2/Sy 2 + c202/0z 2. 

Note that the loss of isotropy introduces derivatives of higher order than that present for 
spheres [see also Brenner & Haber (1983)]. 

We would like to eliminate the infinite series so that: 

(1) The method-of-reflections can be applied to ambient flow fields obtained via 
numerical solutions such as finite elements and finite differences. 
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(2) The reflection process can be simplified by keeping terms from each multipole- 
multipole interaction together (as shown in the following paper). 

From Brenner (1964) and Rallison (1978), we know that, because of the reciprocal 
theorem, the Faxen law can be derived from information contained in certain associated 
single-particle solutions: the (Faxen) force law from the uniform stream solution; the torque 
and stresslet laws from the linear field solution. A more explicit statement can be made if the 
associated solution is represented in terms of the fundamental solution of the Stokes equation 
(i.e. a singularity solution). Hineh (1977) has noted (without proof) that the functional 
forms of the Faxen laws for a sphere are identical to the functional forms of the associated 
singularity solutions. 

The appendix contains two proofs of the following proposition: 

Suppose that the singularity solution for a stationary particle in a uniform stream, U ® is of 
the form: 

v ( x ) -  U® + U ®- /~ {I ~ } ,  

where I is the Oseen tensor given by 

,(x) ! 5  1 
= I x ]  + ~ - ~  xx, 

and L is a linear functional. The parameter ~ denotes the distribution of the singularities. 
Then the Faxen law for the force on a stationary particle in an ambient field v ~ is 

F - -L~ {v®(O}. 

The result can be extended to include translational and rotational motions by adding the 
(known) contributions from these motions. Similar results exist relating the torque and 
stresslet laws with their associated singularity solutions. 

These ideas will now be illustrated for prolate spheroids. The solutions of Chwang & Wu 
(1974 and 1975) and Youngren & Acrivos (1975) indicate that Faxen relations with 
derivatives of finite order can be constructed if one relaxes the restriction of evaluating v ® at 
only one position. 

2. FAXEN LAW FOR PROLATE SPHEROIDS 

The Chwang-Wu solutions for an isolated prolate spheroid in a uniform stream U ®, 
vorticity field fi and rate-of-strain field E can be rewritten as 

v(x) - U ® - U ® • (aldd + or2 (~ - d d ) )  

~e r v' I(x-~)d~, 

1 
v,(x) -eqkfl~Xk -- ~ fl~jk. 17d//. + 7'(/I,. - d t d . ) }  j~_~ (c 2 - ~2)lq.k(x - f)d~ 

f "  - ~) [1 + (c 2 -  ~2) (1 -- e2)w2/ flldm~klmdja' + 
J c -  [ 8e  2 J 

• 1 {Iv,k(x - ~) + I, ka(x - ~)}d~ with 

[2.11 

[2.21 
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and 

1 , 
+ -~ a (dt~k.d, + d, aktd., + a,.,dkdt + a, tdkd,. - 4dflkdtd,.) 

1 

+ i ~ , (a ,~ .  + a,.a~,- aj~a,. + a,e~a,,. + a,~a,d.. 

~e ~ V 2 los(x - / / )d/ /  

1 
+ E#,,d/~,.,dty" f ~  (c 2 -  I~')-~ {lo,k(x - / / )  - la,.,(x -//)}d// .  

[2.31 

where again, I is the Oseen tensor, a is the length of the major semi-axis, c is the distance 
from the centroid to the focal point, e - c/a is the eccentricity and d is the orientation of the 
spheroidal axis. The shape factors a and 7 from Chwang & Wu are reproduced in table I. 

Consequently, the Faxen laws for the force, torque and stresslet on a particle moving as 
U + w x x can be written as 

F - 81"p{~,tdd + a2(/$ - d d ) } .  ~ f  

[2.4] 
. {l + ( c ' _  ~2) (1 - e2) } ~e ~ V 2 v®(/~)d~ - 16z'#ae{atdd + o~2(~ - d d ) } .  U, 

T - 4fp{q, dd + 7'(6 - dd)}. j~_f (c 2 -  42) V x v®(~)d~ + 81rp~'d x .~_f (c 2 -  ,~2) 

[2.5] 
• {1 + (c'  - / j2)  (1 - e') } -~  ~e f V 2 d • o®(//)d//- rt~a3e3{3'dd + 7'(~ - dd)} • o~. 

and 

1 
- -or* (d,~jkat + d,~jtdk + 6adflk + ~ a d f l t -  4d,dfllkdt 

4 

1 
- -~ ,~, (~,~,, + a,,n,, - . . . . . . . . . . . . .  a ,A ,  + e,e,a, ,  + a , ,ad ,  + a,a,e,a,  

/ 
- d~Sjtdk - d,~jkdt-  $adflt - ~,tdflk)] j "  (c 2 - 4 2 ) 

-2T~"t* (d,~jk~: + d catdt) f_~ (c ~ -/iz){V x v'(f) - 2~}~d//. 

[2.61 
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Table 1. Constants for the velocity representation for the spheroid. (i) Constants derived from 
Chwang & Wu (1974, 1975) 

• '{-2e+ O+ eb tog (1 + eli-' a t - ~TcT-,/j 

{ a 2 - 2 e  2 2 e + ( 3 e  z -  1)log 

• y - ( i -  e ' ) { 2 e -  ( 1 -  e2) log( 1 + e l i - '  

"~' I- ~" +"+ '~' '°' h + 'II-' V3--(I -- ~i-rT_ , / j  

~; - ~ 3 ( 1  - e2) -1 

~,- 2e"y,{-2e + log (~_ ee)} {2e(2e2- 3)+ 3(I - ea)log [ l+k i--~-~/Jell -| 

a,-eL'/,{-2e+ (I-e2)log(ll~e)}{2e(2e2-3)+3(l - eZ) logl I + ell-' 

a 4 - ~v77_,/j 

,,,-e+e-0- e'),o,(' k?-~_ qJ +ell-' 

o.+ o;_ ..I_~. + .+ .., ,o. {1+ ell -t 
% 

t 

{,+ ell -! 

,*  m V, - ,'3 - - e ' { - 2 e  + (l + e" lo, [l + qJ 

These expressions may be reduced to earlier forms by expanding the ambient field in a 
Taylor series at the particle eentroid. However, in the present form, the infinite series is 
replaced by integrals which are actually better for discrete data. 

The translational and rotational motion of a force-free and torque-free spheroid follows 
from [2.4] to [2.6] as 

1 c{ ( l - e 2 )  } 
O - ~ c Z c  1 + (c 2-/j2) 4e 2" V ~ v ®(,~)d~, [2.7] 

c o - ~ Z ,  (c2 -/~2) V x v®(/~)d/j 

+ 4~ ~ (2 - e~) f f  (c '  - ~') 1 + ( d  - f )  (1 - e~) 8d v ~ d x e ' ( O . d d ~ .  
[2.81 

One application of the last equation is the generalization of the Jeffery equations for the 
evolution of the orientation of a spheroid in a linear field [see Leal & Hinch (1072)] to the 
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following for an arbitrary Stokes field, 

d - ~ c  3 (c 2 - ~2)fF(~) × d d/~ + 4c 3 (2 - e 2) (c 2 _ ~2) 
[2.9] 

. { l + ( c  2 - ~2)(1 8e 2-e2) V2}(e®(//) .d_e®(/j):ddd)d~" 
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NOTATION 

a length of major semiaxis of spheroid. 
c distance from center to foci. 
d unit vector denoting orientation of spheroid axis. 
e eccentricity of the spheroid. 

e,E rate-of-strain tensor. 
F force exerted on the particle by the fluid. 
I Oseen tensor 

S stresslet or symmetric part of the stress dipole. 
T torque exerted on the particle by the fluid. 
U particle translational velocity. 
v velocity. 
x position vector. 

xc position of particle centroid. 

Greek letters 
constants in the Chwang-Wu singularity solutions. 

~, constants in the Chwang-Wu singularity solutions. 
identity tensor. 

e alternating tensor. 
viscosity. 

/~ vector denoting position on the spheroid axis. 
¢0 particle angular velocity. 
fl vorticity. 
fl vorticity tensor. 

Subscripts 
i , j ,k , t ,m 

indices used in the Einstein summation convention. 

Superscripts 
ambient field. 
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APPENDIX 

In this appendix we prove that if the uniform streaming problem has the functional 
form: 

then the Faxen law for the force on the stationary particle is 

F - - t ~  {v=(~)}. 

Proof I 
We apply the reciprocal theorem of Lorentz (Happel & Brenner 1965) to two 

velocity-stress pairs (v D, ¢) and (v', ~r') where the first set is the disturbance solution to the 
problem on interest and the second set is the singularity (disturbance) solution of the 
uniform streaming problem. The singularities are assumed to be outside the fluid region (i.e. 
inside or on the surface of the particle). The reciprocal theorem states that 

~s V~ ~jnj dA - ~ ,  v~cx~nj dA. [All 

On the particle surface, v; - - U7 so the RHS of [A1] simplifies to - U  ® • F. 
We apply the divergence theorem to the analytical continuation of v ° inside the particle. 

The LHS of [AI ] becomes 

v~¢~jdV+ /~)} d V, 

where we have used the Stokes equation to simplify V • ¢'. The first term vanishes for a rigid 
particle. (Even in the case where the particle is rotating, this term still vanishes because the 
rate-of-strain vanishes inside so that Vv D is antisymmetric.) The properties of the Dirac delta 
function simplifies the second term to:/~e{(v"(x - /~)} .  The Faxen law follows as 

F - -L~{v'(~)}. 
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Proof11 
We start with the integral representation for the velocity of interest: 

1 t "  
V(X) V®(X) ~--~,  (~. n)  • ] (x  - x s )  d S ( x , ) ,  

1 t ~  
¢ ' ( x )  - ~-2:_.. ¢_ (~. n)  • I(x - x , )  d S ( x , ) ,  

if x is in the fluid, 

if x is in the particle. 

[A2] 

This can be derived by applying the reciprocal theorem to (v,~r) and (I,2:), where 2: is the 
stress field of I. We also have, from the boundary condition of the uniform streaming 
problem, 

£~{I (-~'-w~)}x - ~ - -#,  ifx is in the particle. 

The Faxen law is obtained by applying L~ to both sides of the second equation in [A2]. The 
Oseen tensor in the surface integral is converted into (the negative of) the idemfactor so that 
the integral reduces to the expression for the force. 


